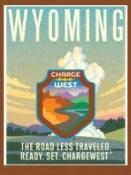
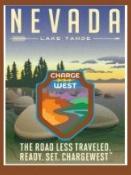
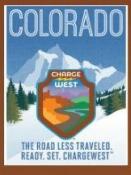
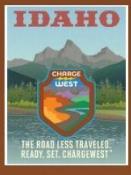
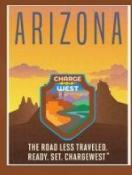
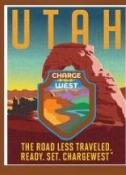


Western Gateway Communities EV Charging Needs Assessment







Identifying Needs and Opportunities for Electric Vehicle
Charging in Gateway Communities of the Intermountain West

ChargeWest
WEST ELECTRIC HIGHWAY

2026

Acknowledgements

The National Association of State Energy Officials (NASEO) acknowledges the significant contributions of Utah Clean Cities and Communities, who provided guidance and information in the development of this report. NASEO especially appreciates the U.S. Department of Energy's Clean Cities and Communities program for recognizing the importance of transportation electrification and providing support to make this report possible.

Our special thanks go to the ChargeWest partners for organizing and facilitating the community listening sessions on which this report is based: Drive Clean Colorado, Greater Nevada Clean Cities, Land of Enchantment Clean Cities Coalition, Treasure Valley Clean Cities Coalition, Utah Clean Cities and Communities, and Yellowstone-Teton Clean Cities.

This report was authored by Jessie Lund, NASEO Senior Program Director for Transportation. This work builds off the [previous EV Charging Needs Assessment](#) authored by NASEO in 2021 under a previous DOE award.

Cover Image Credit: NASEO

Glossary

AFC.....	Alternative Fuel Corridor
AFDC.....	Alternative Fuels Data Center
CCS.....	Combined Charging System
DCC.....	Drive Clean Colorado
DCFC.....	Direct Current Fast Charging
DOT.....	Department of Transportation
ESP.....	Electric Service Provider
EV.....	Electric Vehicle
EVSE.....	Electric Vehicle Supply Equipment
FHWA.....	Federal Highway Administration
FSRI.....	Fire Safety Research Institute
GNC4	Greater Nevada Clean Cities and Communities Coalition
IIJA.....	Infrastructure Investment and Jobs Act
LOECC.....	Land of Enchantment Clean Cities Coalition
MOU.....	Memorandum of Understanding
NACS.....	North American Charging Standard
NASEO.....	National Association of State Energy Officials
NEVI.....	National Electric Vehicle Infrastructure Program
NFPA.....	National Fire Protection Association
PUC.....	Public Utilities Commission
REV West.....	Regional Electric Vehicle Plan for the West
TVCCC.....	Treasure Valley Clean Cities Coalition
UCCC.....	Utah Clean Cities and Communities
YTCC.....	Yellowstone-Teton Clean Cities

Table of Contents

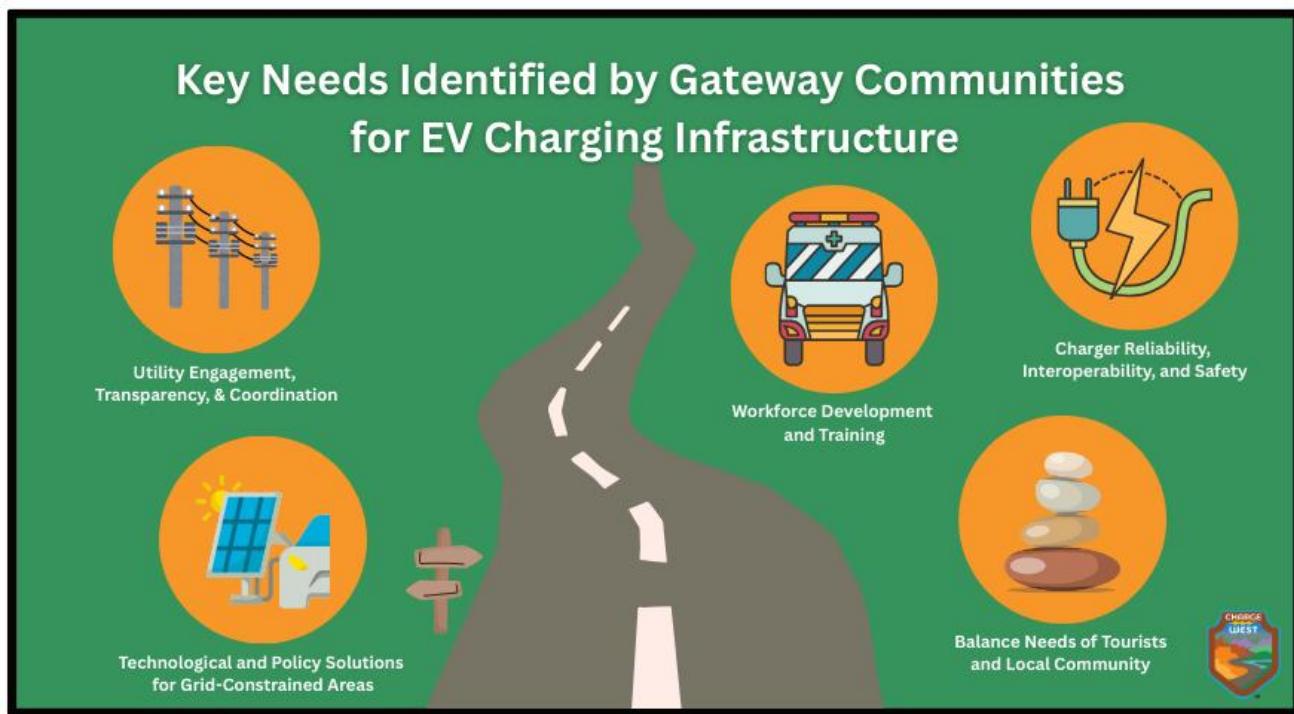
Acknowledgements	2
Glossary	3
Executive Summary	5
Introduction and Background	8
Methodology	10
Key Findings and Opportunities	12
Gateway Community EV Charging Perceptions	12
Opportunities for Improvement.....	14
Conclusion and Recommendations	18
Assess Grid Capacity Early	19
Make Funding Available for Grid Upgrades.....	19
Conduct First Responder Training	20
Conduct Outreach to Community Members and Local Businesses	20
Develop Community-Specific Plans	21
Streamline EV Charger Permitting, Inspection, and Interconnection.....	21
Support Upgrades of Existing, Underutilized Chargers	22
Leverage ChargeWest Resources and Partners	22
Additional Resources.....	23
Notice.....	24
Sponsors	24
<i>Bibliography</i>	25

Executive Summary

As electric vehicle (EV) adoption across the U.S. grows, communities along scenic byways and All-American Roads and near national parks and other popular tourist destinations are working to modernize their infrastructure to support charging for both tourists and residents. Drivers increasingly expect to be able to charge their EVs in these communities, and data suggests that EV drivers often spend more money at businesses and in communities with charging infrastructure available.ⁱ

With economic development front of mind for many gateway communities, cities and businesses are planning for and building EV charging to retain and expand tourism revenue, as well as increase choice for local residents who may be interested in an EV for their next car purchase. Communities are also seeking sustainable tourism that minimizes local impacts such as air and noise pollution. While some have successfully installed chargers, many rural communities face unique and persistent challenges to EV charger deployment compared to urban areas, where most today's chargers are located.ⁱⁱ

As states, local governments, chambers of commerce, tourism boards, Clean Cities and Communities coalitions, and other stakeholders work to support gateway communities with EV charging infrastructure planning and construction, they must first understand the unique challenges faced by these communities and their needs for overcoming barriers.


Through a series of Clean Cities-led listening sessions with gateway communities, the ChargeWest initiative heard directly from local stakeholders across the intermountain west about their perspectives and experiences with EV charging to date. Key findings from these listening sessions are summarized within this report, which ChargeWest hopes will inform future planning efforts, program design, and policy.

Key needs identified in the listening sessions with gateway communities include:

- **Utility Engagement, Transparency, and Coordination**
 - Accessible and up-to-date information on grid hosting capacity for EV charging
 - Responsive point of contact at the local utility
 - Coordination on funding opportunities, including due diligence during project scoping and selection
 - Standardized policies and funding for necessary grid upgrades (e.g., “make-ready”)
- **Technological and Policy Solutions for Grid-Constrained Areas**
 - Local energy assets like on-site power generation (solar, linear generators, natural gas, etc.), battery storage, and/or microgrids

- Can support community resilience needs beyond simply EV charging
- Distributed chargers and dynamic power sharing
- Flexible interconnection policies
- **Workforce Development and Training**
 - First responders
 - Charger technicians and installers
 - Local permitting departments
 - EV technicians and mechanics
- **Balance Needs of Tourists and Local Community Members**
 - The right tool for the job – matching charging type with use case
 - Local community desire for charging at key destinations (grocery stores, libraries, parks)
 - Tourist needs, including both DCFC near corridors and/or retail locations in town and Level 2s at hotels, trailheads, etc.
- **Charger Reliability, Interoperability, and Safety**
 - Uptime is a high priority - essential for user trust
 - Charging port standards that keep up with market trends and allow for or have built-in adapters, to serve diverse users
 - Well lit, secure areas where drivers feel safe and stations aren't vandalized

Figure 1: Key Needs Identified by Gateway Communities for EV Charging Infrastructure

Based on the challenges and needs identified by the listening sessions, ChargeWest recommends the following for states and local government looking to partner on EV charging:

- Assess Grid Capacity Early
- Make Funding Available for Grid Upgrades
- Conduct First Responder Training
- Conduct Outreach to Community Members and Local Businesses
- Develop Community-Specific Plans
- Streamline EV Charger Permitting, Inspection, and Interconnection
- Support Upgrades of Existing, Underutilized Chargers
- Leverage ChargeWest Resources and Partners

Figure 2: Recommendations for EV Charging in Gateway Communities

By working together, states and gateway communities can support EV charger investment where it is most needed to meet both tourism and local community needs.

Introduction and Background

In 2017, Governors from Arizona, Colorado, Idaho, Montana, Nevada, New Mexico, Utah, and Wyoming signed a Memorandum of Understanding (MOU) to develop a Regional Electric Vehicle Plan for the West (REV West), with the goal of supporting a seamless electric vehicle (EV) driving experience along key corridors in the intermountain west.ⁱⁱⁱ Recognizing that improved availability of EV charging infrastructure would increase access to Signatory States' highways, promote tourism and recreation in their rural communities, and support their economies, these states committed to collaborate with one another on standards for stations and to exchange model policies and best practices. In 2019, all eight REV West governors (four of whom were newly elected in 2018), signed an updated MOU to signal their recommitment to the agreement and broad support for transportation electrification.^{iv}

The REV West states have made significant progress since the MOUs were signed. As of August 2025, there are approximately 5,315 publicly accessible direct current fast charging (DCFC) ports at 1,200 station locations throughout the region.^v When Level 2 charging is included, there are over 18,330 ports across 6,427 stations. (See *Table 1*.) This impressive growth in charging infrastructure is thanks to coordination among states, streamlined EV policy and programs, and significant investment from the private sector, states, and the federal government.

Table 1: EV Charging Stations in the Intermountain West as of August 2025 (Alternative Fuel Data Center)

State	Level 2 Ports	DCFC Ports	DCFC Locations
Arizona	3,101	1,230	179
Colorado	5,083	1,371	447
Idaho	364	250	69
Montana	213	249	53
Nevada	1,487	1,030	118
New Mexico	532	466	144
Utah	2,089	566	150
Wyoming	148	153	40
Total	13,017	5,315	1,200

Under the 2021 Infrastructure Investment and Jobs Act (IIJA), the National EV Infrastructure (NEVI) formula program allocated \$5 billion to States, D.C., and Puerto Rico over five years, from Fiscal Year 2022 through 2026 – including \$345 million to these eight intermountain west states – to develop public-private partnerships for EV charging infrastructure along alternative fuel corridors (AFCs).^{vi vii} Since the program was created, the REV West Signatory States have developed EV Infrastructure Deployment Plans for NEVI and have

already invested over \$2.6 million – with millions more in the pipeline – in EV charging infrastructure projects.^{viii} Some states also have additional funding outside of NEVI available to support EV charging projects.

Increased charging infrastructure, among other factors, seems to be assuaging consumer concerns. A 2025 consumer survey found that Americans are increasingly positive about EVs, with 44 percent indicating a positive attitude towards EVs.^{ix} However, more work is needed to increase EV adoption and achieve state and community economic development and sustainability goals.

As corridors are sufficiently built out with reliable, convenient charging, states are increasingly turning their attention to charging needs beyond AFCs. Many states anticipate utilizing remaining NEVI funds to support charging infrastructure development in communities, both urban and rural. From workplaces to multifamily homes, there is no shortage of need for EV charging in urban areas. However, thanks to longer dwell times at these locations, Level 2 chargers can often serve these needs. Level 2 chargers are relatively inexpensive compared to DCFCs and therefore require less funding per project. Even DCFCs in urban areas may not require significant public funding – especially in areas with high EV adoption – because increasing utilization rates are making these investments profitable for the companies that own and operate them, even without government incentives.^x

Meanwhile, rural communities tend to have lower EV adoption and therefore may have a harder time attracting EV charging development without incentives.ⁱⁱ For this reason, states may choose to prioritize rural communities for limited public funds. When it comes to allocating available funding, states typically balance need and impact. That is, they want to offer funding where it is most needed and likely to make a difference (i.e., for projects that wouldn't otherwise happen without the funding), and they also want to ensure that the funded projects will be utilized by the intended beneficiaries (i.e., chargers being used rather than sitting idle). Gateway communities located near national parks, scenic byways, All-American Roads, and other popular tourist destinations are often within the “sweet spot” for these funding considerations.

As EV adoption across the U.S. grows, gateway communities are working to modernize their infrastructure to support charging for both tourists and local residents. Drivers increasingly expect to be able to charge their EVs in these communities, and from an economic development perspective, data suggests that EV drivers often spend more money in communities with charging infrastructure available.^{xi} A 2024 study by MIT researchers found that opening a charging station significantly boosted spending at nearby businesses.ⁱ In a 2021 interview, one rural business owner in Salida, Colorado said that

installing an EV charger at his business was “probably his best marketing idea ever.”^{xii} He later became Mayor, installed more chargers in town, offering free charging to drivers, and found that “the economic return of people stopping in town, spending money here, has paid for the electricity multiple, multiple times.”

With economic development front of mind, many gateway communities are planning for and building EV charging to meet the growing needs of tourism, as well as residents.

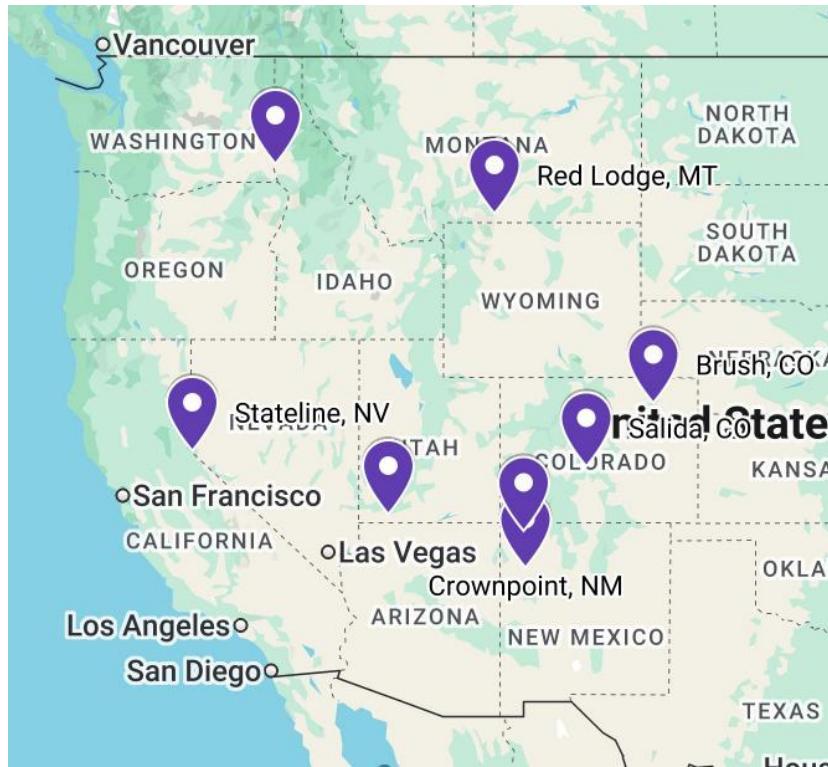
However, while some have successfully installed chargers, many rural communities face unique and exacerbated challenges to EV charger development compared to urban areas, where the vast majority of today’s chargers are located.ⁱⁱ

To support gateway communities throughout the intermountain west with EV charging infrastructure build-out and awareness activities, Utah Clean Cities and Communities (UCCC) partnered with eight additional Clean Cities Coalitions in the region, as well as the National Association of State Energy Officials (NASEO). Building on the foundational work of the REV West states, as well as the success of the previous “CORWest” project, the project partners launched ChargeWest, a three-year initiative to support EV infrastructure investment and educational opportunities in rural and underserved areas of the intermountain west – with an emphasis on gateway communities to national parks and other recreational destinations in the region.

A key first step under the project is to better understand the unique barriers intermountain west gateway communities are facing with respect to EV charging infrastructure planning and construction. Only then can potential pathways for overcoming these barriers be identified and implemented.

This initiative is particularly timely given the focus from the Trump Administration on strengthening coordination with gateway communities. In June 2025, U.S. Secretary of the Interior, Doug Burgum, issued Secretarial Order 3434, requiring individual national parks to formalize a relationship with their neighboring towns.^{xiii} Under the order, parks are required to hold quarterly meetings with leaders from surrounding communities and designate a “gateway community coordinator” to coordinate outreach. Many parks have strong, existing relationships with their gateway communities, the two often meeting to discuss their shared future and priorities.

Methodology


During the summer (April through August) of 2025, ChargeWest Clean Cities and Communities partners conducted listening sessions in eight select gateway communities

throughout the intermountain west. These gateway communities were selected for their proximity to priority scenic byways, as identified by the Clean Cities and Communities Coalitions. See Table 2 below for more information on each community and Figure 3 for a map of these communities.

Table 2: Listening Sessions Took Place in These Gateway Communities

<u>Gateway Community</u>	<u>ChargeWest Partner Facilitator(s)</u>	<u>Relevant Scenic Byway</u>	<u>Nearby Tourist Destination(s)</u>
Brush, Colorado	Drive Clean Colorado (DCC)	Pawnee Pioneer Trails	Pawnee National Grassland
Salida, Colorado	Drive Clean Colorado (DCC)	Collegiate Peaks	Browns Canyon National Monument, Arkansas Headwaters Recreation Area, & Monarch Mountain
Lewiston, Idaho	Treasure Valley Clean Cities Coalition (TVCCC)	Northwest Passage	Hells Gate State Park, Nez Perce National Historical Park
Red Lodge, Montana	Yellowstone-Teton Clean Cities (YTCC)	Beartooth Highway	Yellowstone National Park
Stateline, Nevada	Greater Nevada Clean Cities and Communities Coalition (GNC4) & Utah Clean Cities and Communities (UCCC)	Lake Tahoe East Short	Lake Tahoe
Crownpoint, New Mexico	Land of Enchantment Clean Cities Coalition (LOECC)	Trail of the Ancients	Chaco Canyon, El Morro National Monument
Farmington, New Mexico	Land of Enchantment Clean Cities Coalition (LOECC)	Trail of the Ancients	Chaco Canyon, Aztec Ruins National Monument
Springdale, Utah	Utah Clean Cities and Communities (UCCC)	Zion National	Zion National Park

Figure 3: Map of Gateway Community Listening Sessions (Source: Google My Maps)

Each listening session brought together a combination of local officials, utility representatives, tourism stakeholders, state representatives, and community leaders to discuss local perspectives on EV adoption and charging infrastructure development, identify region-specific challenges and opportunities, and better understand EV charging infrastructure gaps, opportunities, workforce readiness, and resiliency planning.

Following each listening session, notes were shared with the National Association of State Energy Officials (NASEO), who aggregated and anonymized the stakeholder feedback, the key themes of which were then summarized for this report.

Key Findings and Opportunities

Through the listening sessions, ChargeWest partners identified the following perspectives and high-priority needs from intermountain west gateway communities:

Gateway Community EV Charging Perceptions

Overall, gateway communities are interested in EV charging, particularly as it relates to economic development. Business owners and local government don't want to lose out on

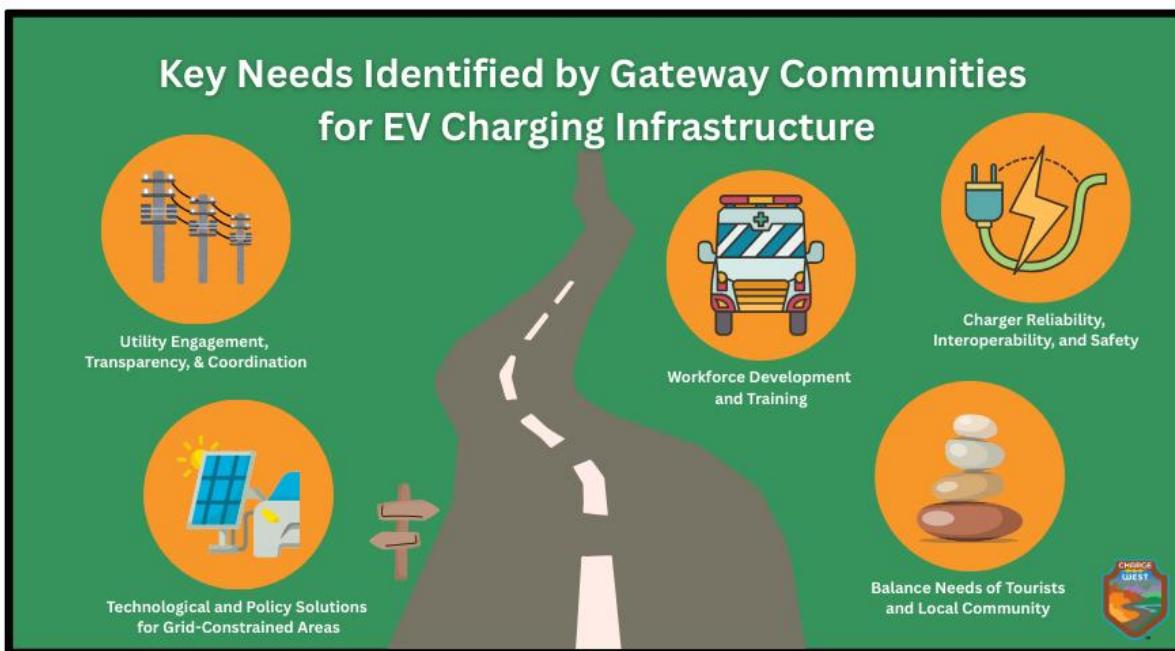
revenue if they don't keep pace with tourists' expectations. Many see EV charging as necessary to continue to attract tourism, and therefore part of the future of their community. There are varying degrees of urgency, however, with some communities acknowledging the need to start long-term planning while others feel a sense of competition with other communities and worry that if they don't deliver charging in the near-term, tourists will plan trips elsewhere.

Many gateway communities have unique dual identities as both a small town and a high-impact gateway to some of our nation's most cherished gems. Acting as both a destination and a corridor, they look to meet the needs of both tourists visiting their community and those simply passing through. However, they must also serve the needs of local residents and acknowledge that neither tourism nor EV charging development can come at the expense of local needs, including grid reliability.

State Coordination

Gateway communities are generally interested in coordinating with their state government regarding available EV charging funding programs, such as the NEVI program. Particularly with the added flexibility of the program under revised guidance from the Federal Highway Administration (FHWA) in August 2025, gateway communities are interested in how available funds can be used to support EV charging development in their communities.

As described above, many are interested in investment in a mix of purpose-built chargers to serve both locals and tourists and would like to work with state program administrators – often within the State Energy Office and/or Department of Transportation (DOT) – to align on priority sites within the community. For example, many of the gateway community representatives who participated in the listening sessions noted that tourists often expect charging at key destinations (e.g., hotels, beaches, trailheads) as well as along highways, while local community members would like to prioritize charging at existing community hubs (e.g., libraries, grocery stores, etc.). Dwell time compatibility should also be considered strategically. For example, Level 2 chargers are likely sufficient to serve hotel guest needs, as they are often parked there overnight; meanwhile, DCFCs are likely a better fit for corridor chargers, where drivers expect to charge and get back on the road as quickly as possible. Ease of development and electricity access should be considered as well. For example, Level 2 chargers at hotels are likely much easier and faster to install than the same chargers at more remote locations like at trailheads and may be able to mitigate the need for the latter. There was agreement that overall, sites must serve both visitors and year-round residents equitably. Convenience for each should be considered when prioritizing potential site locations. Sites should also be sure to comply with ADA and visitor amenities requirements.


Particularly in states with lower EV adoption rates compared to neighboring states with higher adoption rates, policies and programs must anticipate the impact of tourism, often from neighboring states, and still prepare gateway communities for rapid change.

Gateway communities generally feel that planning for EV charging should be done as part of broader, holistic planning efforts around communities' future vision for their transportation system. Based on the listening sessions, these future visions are often largely electric, multimodal, and community-centered — including e-bikes, scooters, electric boats, and shuttles supported by solar and battery storage. Planning may also include resiliency efforts and, in order to mitigate congestion challenges with tourism, incentives to make leaving personal vehicles behind the preferred choice.

Opportunities for Improvement

Listening sessions uncovered the following challenges and opportunities for improvement when it comes to EV charging in gateway communities:

Figure 4: Key Needs Identified by Gateway Communities for EV Charging Infrastructure

Utility Engagement, Transparency, and Coordination

Utility constraints were generally seen as the largest barrier to EV charging development in gateway communities. Concerns around grid capacity came up in nearly every listening session. Some communities noted that they already experience common brownouts or blackouts due to insufficient electrical grid capacity. These challenges are often heightened during peak tourism seasons, with additional visitors taxing an already maxed-

out system. Communities note that EV charging cannot exacerbate these challenges, coming at a cost to local residents and the power they rely on for their businesses and daily lives. As one listening session participant shared, "The grid isn't just strained — it's inconsistent. We need to talk about power *quality* just as much as capacity." Level 2 chargers may be able to mitigate some of these issues, which tend to be more acute with DC fast chargers.

Distribution system challenges are most commonly cited by charging developers and local utilities with respect to EV charging projects. Utilities have a critical role to play in overcoming these hosting capacity limits, which can dramatically impact cost and therefore overall feasibility of projects. These challenges may be particularly acute for gateway communities located in rural cooperative utility territory, as coops tend to have less resources and programs to support EV charging compared to investor-owned utilities.

Some communities cited examples of potential EV charging projects stalling or failing completely due to grid constraints, a lack of communication from the local utility, and/or a lack of funding for required grid upgrades. Local utilities may not have staff capacity or expertise in EV charging to effectively coordinate with potential site hosts or charging developers. As such, education and training – particularly for local utility staff – can go a long way. This sort of training could be provided by the state, local community or technical colleges, or nonprofit partners such as Clean Cities and Communities coalitions. In addition, utilities may wish to identify a single point of contact for EV charging questions and projects, which could help streamline communications with stakeholders.

Accessible and up-to-date information on grid hosting capacity for EV charging is also lacking and would be beneficial to EV charging developers and community planners when deciding which potential sites are ideal for installing chargers. While it may not be feasible for utilities to make this information publicly available for their entire territory in the near-term, they may be able to work directly with key stakeholders such as those mentioned above to provide streamlined assessments of capacity within gateway communities.

This sort of coordination would ideally take place early on in project scoping. For example, indications from the local utility early on in the project design and funding request stage can help funders and policymakers have greater confidence that projects awarded funding are in fact likely to be successful. This type of due diligence during project scoping and selection can help increase the efficacy of funding programs and minimize wasted time and resources from both the government and the private sector.

Gateway communities would also benefit from standardized policies and funding for grid upgrades that are necessary to enable EV charging (e.g., "make-ready" programs). These

types of programs are not currently standardized across the intermountain west, and even within the same state, some utilities may have funding available for some expenses, while others only cover other expenses, and still others may have no funding available. A lack of funding for required grid upgrades – whether at the utility or state level – may limit EV charging investment in certain gateway communities, even where charging is needed.

In addition, supply chain challenges related to the grid may also stall or doom potential EV charging projects. For example, communities noted that transformers have been backlogged for years since the COVID-19 pandemic. Knowing that this equipment is often needed for EV charging projects, utilities may consider keeping a few extra transformers in inventory so that backlogged supply chain issues don't hold up projects. This may be more challenging for municipal and rural coop utilities, which tend to serve gateway communities, than it is for investor-owned utilities.

Technological and Policy Solutions for Grid-Constrained Areas

Related to the grid challenges identified above, gateway communities are in need of information, technical assistance, and funding related to technological and policy solutions to support EV charging, even in grid-constrained areas. For example, flexible interconnection policies can allow EV charging site developers to build charging that doesn't overtax the grid at its highest demand times. In addition, newer site design and engineering development, such as distributed chargers and dynamic power sharing can help enable and maximize charging across multiple ports, even with limited grid capacity.

Furthermore, recent technological and economic breakthroughs in local energy assets like on-site power generation (e.g., solar, linear generators, natural gas, etc.), battery storage, and/or microgrids mean that EV charging development is possible, even where grid capacity is limited or nonexistent. Some communities shared that off-grid and solar canopy pilots are gaining interest. These types of solutions can help support not just EV charging, but also broader grid reliability and community resiliency needs.

Workforce Development, Training, and Safety

Gateway communities expressed concerns about the safety of lithium-ion batteries and the lack of training that local first responders have in responding to emergencies with this technology.

Figure 5: EV Charging Station Supported by On-Site Solar in Salida, CO (Credit: NASEO)

Whether vehicle batteries or stationary batteries that may be integrated into charging systems, community members and representatives are concerned about battery hazards, thermal runaway, and emergency protocols.

There is an immediate need within gateway communities for training for firefighters and other first responders. Many gateway communities are served by volunteer fire departments, which have unique needs and capabilities that must be considered as specialized training and resources are developed. Addressing battery hazards and safety protocols is essential to maintain community confidence in EV and charging technology. As such, the gap between EV adoption and emergency responder training must be closed as quickly as possible. Training needs were also identified for local law enforcement, second responders (e.g., tow companies), and municipal staff – also focused on emergency preparedness and response – and potentially including specialized training for local permitting staff. Gateway communities must undertake planning, not just for where chargers should be placed, but for how they prepare for battery safety and system failures. Existing programs at local community and technical colleges may be able to help meet training needs and fill gaps in gateway communities. National organizations such as AFV Educate, the Fire Safety Research Institute (FSRI), and the National Fire Protection Association (NFPA) also offer trainings.^{xiv xv xvi}

Workforce training needs were also identified for EV charger installers and maintenance technicians, as well as EV technicians and mechanics. The need for these skills is expected to grow to support increased EV adoption and community resilience, and high-paying jobs are increasingly available in this field.

Charger Reliability, Interoperability, and Safety

In addition to battery safety concerns noted above, gateway communities also identified

Figure 6: Well-Lit Charging Station in Montrose, CO (Credit: NASEO)

needs for the safety of charger users themselves, including well-lit, secure, and visible locations. Considering the safety of users during site selection and design will help ensure that all drivers feel secure using this infrastructure and will also reduce vandalism – all contributing to higher utilization of chargers.

Charger uptime was also identified as a high priority and essential for user trust. Installing sites with a sufficient number of ports is important to mitigate the risk of ports being out and can support needed redundancy, especially for isolated communities and travelers.

Drivers need to know that when they visit a charger, not only will it work, but it will work *with their vehicle*. As such, not only must chargers be functional, but they must also keep up with market trends such as changing port standards (i.e., automakers shifting from CCS1 charging ports to J3400/NACS) and allow for or have built-in adapters to serve diverse users.

Especially in a small community, even one bad charging experience can have ripple effects on EV perception and adoption for years. For all of these reasons, it is critical to ensure uptime and interoperability of chargers however possible.

Conclusion and Recommendations

With new flexibility within the NEVI program, states may be better positioned to support right-sized EV charging infrastructure development not just along key state AFCs, but also within gateway communities.

As states look to partner with gateway communities on EV charging, they can consider the following recommendations derived from the ChargeWest listening sessions:

Figure 7: Recommendations for EV Charging in Gateway Communities

Assess Grid Capacity Early

When offering funding, states can encourage or require preliminary site assessments to assess available grid capacity for hosting EV charging. Knowing this information early – and ensuring developers are aware of any necessary grid upgrades that would be required for the project – can help ensure applications have been appropriately scoped and are indeed feasible and can help avoid projects stalling or needing to be re-scoped, potentially to a less desirable location.

When possible, states may consider offering funding and/or technical assistance to support this type of due diligence. This may be as simple as creating and making publicly available a centralized list of EV contacts at each utility within the state. States may also coordinate directly with local utilities (and PUCs, as needed) on grid readiness and hosting capacity maps to proactively offer information to prospective project developers, including granular data on available grid capacity, approximate costs and timelines for necessary upgrades, and available incentives for charger installation and/or make-ready work.

States can also undertake state- and region-wide planning efforts related to grid capacity for EV charging. For example, EV adoption and charging demand, including from tourism, may be considered in integrated resource planning by utilities and public utility commissions (PUCs). Much of this will focus on needs for the distribution system and generation, though utilities and PUCs may also assess the transmission system for anticipated upgrade needs to support EV charging.

Make Funding Available for Grid Upgrades

Much of the funding offered today by states and utilities is limited to chargers themselves, including charging hardware, software, and maintenance. However, many projects – particularly in rural communities – require upstream grid upgrades that can be quite costly. Where possible, states may allow incentive programs to offer funding for grid-side equipment (transformers, switchgear, etc.), in addition to EV charger expenses. This funding may come directly from the state (e.g., as an allowable expense under its NEVI program), or the state can help educate communities and utilities about other sources of available funding (e.g., federal).

Grid upgrade projects may consider holistic community reliability needs. Opportunities abound for win-win solutions. For example, some states already offer grants for local microgrid projects, which could be used to support both EV charging and broader resiliency needs. These types of local energy assets are increasingly thought of by gateway communities not as nice-to-haves, but as critical backup and resiliency tools — especially during peak tourism and hot summer months.

ChargeWest is currently developing a guide for gateway communities on solutions for EV charging in grid-constrained areas. The guide will be posted to the ChargeWest website once final.

Conduct First Responder Training

States can work with gateway communities to deliver first responder training for incidents involving EVs and battery hazards. Many communities may be able to leverage existing resources and training programs. For example, Weber State University in Utah offers existing training programs. And Long Beach Clean Cities and Communities has launched a ZEV-Ready West initiative. ChargeWest is piloting emergency responder training programs in gateway communities and will leverage lessons learned to support program improvement and expansion.

Conduct Outreach to Community Members and Local Businesses

States and gateway communities can work together to develop education and outreach campaigns to inform residents and tourists about EV adoption, charging protocols, and safety. These are new topics for many people, and objective information on technology and business models can help alleviate perceived concerns with safety and local impacts.

Outreach should consider how rural communities receive and share news and may promote resources through trusted communication channels like Facebook groups, community bulletin boards, and local radio. Some communities noted that face-to-face engagement (e.g., by Clean Cities, local government, and/or university extension program) remains the most trusted and effective form of outreach within the community. Local Chambers of Commerce, some of whom have expressed interest in EV charging and understanding that it can serve as a driver of tourism and economic development, can also be great partners for outreach efforts.

Outreach may also include local tribes, where relevant; in some cases, they may have more developed and/or ambitious plans to support EV charging infrastructure and/or energy resiliency.

In addition to outreach to residents, states and gateway communities can develop resources specifically for businesses located in gateway communities to (1) share data about EV charging as an economic driver that can help support local

Figure 8: EV Charging at the General Store in Redstone, CO (Credit: NASEO)

businesses and attract visitors traveling along the scenic byway and (2) increase awareness of available funding and technical assistance opportunities. The latter may include opportunities for local businesses to be site hosts, thereby generating revenue while not owning or operating the equipment. Outreach may also include information for potential site-hosts on ways to pair DCFC stations with on-site generation and/or storage to mitigate grid constraints and/or increase site resiliency from a baseline.

Business-focused outreach may target tourism-focused businesses with fleets with predictable routes and large visitor volume (e.g., rafting companies with shuttles) for near-term priority for electrification. These types of businesses can act as “anchor” users for EV charging projects to ensure sufficient demand and utilization of charging, while chargers – if open to the public – could also serve community and other tourism needs. Outreach may also target businesses that have previous experience with alternative fuel infrastructure development (truck stops, travel centers, etc.) and have proven to be “early adopters” of new technology (e.g., CNG, renewable diesel). Many Clean Cities and Communities coalitions have existing relationships with these stakeholders that can be leveraged to identify and reach out to these potential partners.

Develop Community-Specific Plans

States can work with gateway communities to support the development of community-specific EV charger siting and resiliency plans that integrate both corridor and community needs. Planning may be holistic, including broader transportation trends and goals [e.g., multi-modal transportation options, micromobility (e-bikes and scooters), etc.] – and may even include trends outside of the traditional “transportation” world – e.g., synergies with charging infrastructure development to support growing interest from farmers and ranchers in electrical agricultural equipment in the region.

Development of these plans will bring together key stakeholders and catalyze critical conversations about local needs and balancing those with tourist expectations. Additionally, having community plans in place may make applications for EV charger funding that are in line with existing plans stand out and be more likely to receive funding.

Where possible, local governments in rural and gateway communities may be encouraged to adopt formal goals related to EV adoption, public fleet electrification, and/or alternative fuel infrastructure development. Having these sorts of policies in place can also increase the community’s ability to access funding (e.g., may score higher on RFPs).

Streamline EV Charger Permitting, Inspection, and Interconnection

Gateway communities may also be encouraged to streamline EV charger permitting processes. By expediting the installation and commissioning of EV charging stations, local

governments can help make EV charging more accessible for residents and businesses. By lowering “soft costs” like those associated with permitting, inspection, and interconnection, local governments can help minimize the overall cost of EV charging infrastructure. Resources and certification programs are available to support these efforts. For example, the Interstate Renewable Energy Council’s Charging Smart program assists local governments in setting and achieving impactful electric vehicle (EV) readiness goals and even certifies communities that achieve certain benchmarks with Bronze, Silver, or Gold designations, providing national recognition of their status as an EV-friendly community.^{xvii} States may be able to help get the word out to local governments about these types of programs and resources.

Support Upgrades of Existing, Underutilized Chargers

In addition to funding for new EV charging infrastructure, states and gateway communities can also offer and leverage funding to support upgrades to *existing* chargers that may be outdated and/or unreliable, contributing to range anxiety and a general lack of confidence in EV and charging technology among local drivers. For example, some early chargers offer only CHAdeMO ports, which are no longer used by US automakers, which have largely transitioned to J3400/NACS or CCS1 charging ports on their vehicles. Similarly, some early chargers were not equipped with sufficient monitoring software and/or were not kept up by owners and may therefore be often down and unavailable for use. Again, even a single horror story can have ripple effects within a small community, discouraging prospective EV buyers or site hosts, and so attention should be paid to strategies for upgrading existing chargers to ensure reliability and utilization.

Leverage ChargeWest Resources and Partners

Finally, states and gateway communities can leverage ChargeWest™ resources and Clean Cities and Communities Coalition partners to complement state efforts such as NEVI plans and other funding programs. ChargeWest partners can help link corridor buildout to gateway community priorities, ensuring that communities’ unique history, landscape, and visitor economy are all integrated into resilient and forward-looking electrification strategies. ChargeWest resources are available at <https://chargewestev.org/>.

Additional Resources

- “Charging Forward: A Toolkit for Planning and Funding Rural Electric Mobility Infrastructure,” U.S. Department of Transportation (February 2022), <https://www.transportation.gov/rural/ev/toolkit>.
- “First Responders Training for EVs: Needs Outline,” Drive Clean Colorado (April 2025), <https://drivecleancolorado.org/wp-content/uploads/First-Responder-Working-Group-Needs-Outline-1.pdf>.
- “Northern New England Rural EV Adoption Toolkit,” VEIC (April 2022), https://www.nature.org/content/dam/tnc/nature/en/documents/TNC_NNE_Rural_EV_Toolkit_April_2022_Final.pdf.

Notice

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Sponsors

This report is based upon work supported by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) under the Vehicle Technologies Office (VTO) Award Number DE-EE0011143. The contents are intended for informational purposes only. The authors are solely responsible for errors and omissions.

*National Association of
State Energy Officials*

Bibliography

ⁱ Z. Winn, "Study: EV charging stations boost spending at nearby businesses," MIT News (September 2024), <https://news.mit.edu/2024/study-ev-charging-stations-boost-nearby-business-spending-0904>.

ⁱⁱ S. Bestvater and S. Shah, "Electric Vehicle Charging Infrastructure in the U.S.," Pew Research Center (May 2024), <https://www.pewresearch.org/data-labs/2024/05/23/electric-vehicle-charging-infrastructure-in-the-u-s/>.

ⁱⁱⁱ "Memorandum of Understanding Between Arizona, Colorado, Idaho, Montana, Nevada, New Mexico, Utah and Wyoming: Regional Electric Vehicle Plan for the West," National Association of State Energy Officials (October 2017), https://www.naseo.org/Data/Sites/1/revwest_mou.pdf.

^{iv} "Memorandum of Understanding Between Arizona, Colorado, Idaho, Montana, Nevada, New Mexico, Utah and Wyoming: Regional Electric Vehicle Plan for the West," National Association of State Energy Officials (December 2019), https://www.naseo.org/Data/Sites/1/revwest_mou_2019_final.pdf.

^v "Electric Vehicle Charging Station Locations," Alternative Fuels Data Center, U.S. Department of Energy, https://afdc.energy.gov/fuels/electricity-locations#/analyze?tab=location&fuel=ELEC&ev_levels=dc_fast.

^{vi} "National Electric Vehicle Infrastructure (NEVI) Program," Federal Highway Administration, U.S. Department of Transportation, <https://www.fhwa.dot.gov/environment/nevi/>.

^{vii} "5-year National Electric Vehicle Infrastructure Funding by State," Federal Highway Administration, U.S. Department of Transportation (January 2025), https://www.fhwa.dot.gov/infrastructure-investment-and-jobs-act/evs_5year_nevi_funding_by_state.cfm.

^{viii} "NEVI Formula Program Status of Funds as of February 6, 2025," Federal Highway Administration, U.S. Department of Transportation (February 2025), <https://www.fhwa.dot.gov/environment/nevi/resources/nevi-formula-program-status-funds-feb-6-24.pdf>.

^{ix} "Consumer Survey: 2025 Driver Behaviors and Perspectives," Transportation Energy Institute (July 2025), <https://www.transportationenergy.org/research/reports/consumer-survey-2025-driver-behaviors-and-perspectives/>.

^x "EV Chargers Are Becoming Profitable, But Rebates Are Still Essential," BriteSwitch (May 2025), <https://briteswitch.com/news/ev-chargers-are-becoming-profitable.php>.

^{xi} Z. Winn, "Study: EV charging stations boost spending at nearby businesses," MIT News (September 2024), <https://news.mit.edu/2024/study-ev-charging-stations-boost-nearby-business-spending-0904>.

^{xii} S. Brasch, "Colorado Mayor Wants All Electric Car Chargers To Be Universal," NPR (May 2021), <https://www.npr.org/2021/05/03/992993629/colorado-mayor-wants-all-electric-car-chargers-to-be-universal>.

^{xiii} D. Burgum, SO 3434 - Strengthening Coordination with Gateway Communities, U.S. Department of the Interior (June 2025), <https://www.doi.gov/document-library/secretary-order/so-3434-strengthening-coordination-gateway-communities>.

^{xiv} "First and Second Responder Training," AFV Educate, <https://www.afveducate.org/first-responders>.

^{xv} "Fire Safety Academy," Fire Safety Research Institute, <https://training.fsri.org/>.

^{xvi} "Alternative Fuel Vehicle Training," National Fire Protection Association, <http://www.evsafetytraining.org/>.

^{xvii} "Charging Smart," Interstate Renewable Energy Council, <https://irecusa.org/programs/charging-smart/>.