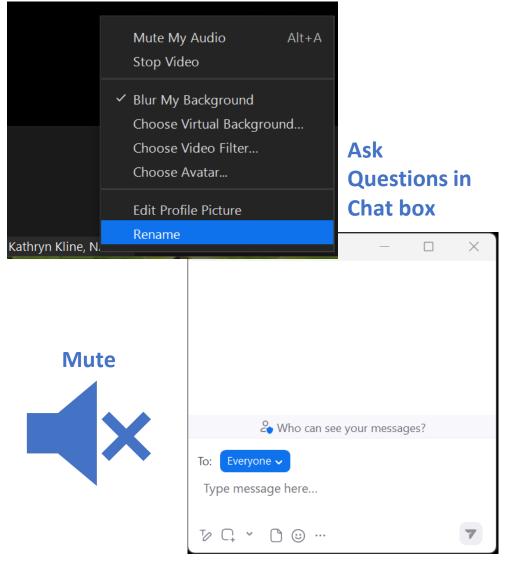


NARUC National Association of Regulatory Utility Commissioners

NASEO-NARUC Microgrids State Working Group Webinar: Powering Data Centers through Microgrids

December 3, 2024


Source: RL Martin

Webinar Housekeeping

Please remain on mute during the webinar.

- Ensure your zoom profile name includes your **name** and **affiliation** (ex. John Doe, OCC) You can do this by right clicking on your name and selecting "rename".
- 3 Enter questions into the chat box. The moderator will ask panelists questions from the chat box after the presentations.
 - Be respectful of other attendees.
- Disruptive participants will be removed from the meeting.

Update name in zoom

Agenda

Торіс	Speaker
Welcome and Opening Remarks	Kiera Zitelman, NARUC
Speaker Presentations	 Karen Onaran, President and CEO, Electricity Consumers Resource Council Craig Gordon, Head of Global Policy and Regulatory Affairs, Mainspring Energy Brandi Frazier Bestpitch, Associate Director Energy Security and Reliability, Virginia Department of Energy
Speaker Q&A	Moderator, Hon. James Van Nostrand, Chair, Massachusetts Department of Public Utilities

Presenters

• Moderator:

 Hon. James Van Nostrand, Chair, Massachusetts Department of Public Utilities

- Speakers:
 - Karen Onaran, President and CEO, Electricity Consumers Resource Council
 - Craig Gordon, Head of Global Policy and Regulatory Affairs, Mainspring Energy
 - Brandi Frazier Bestpitch, Associate Director Energy Security and Reliability, Virginia Department of Energy

NASEO/NARUC Microgrids State Working Group

Powering Data Centers through Microgrids - An Industry Response

December 3, 2024

Contents

- 1. Intro
- 2. Terminology: the Grid vs Microgrids
- 3. IEA Projections
- 4. Survival of the Speediest
- 5. Case Study: xAI
- 6. Macro Benefits of Microgrids
- 7. Operational Flexibility over Time
- 8. Conclusion

A 9 MW microgrid charging solution near the Port of Los Angeles. Capable of charging 96 EV trucks simultaneously. Owned by Prologis to serve Maersk's drayage truck fleet.

The microgrid saved at least 2 years relative to the local utility's planned schedule.

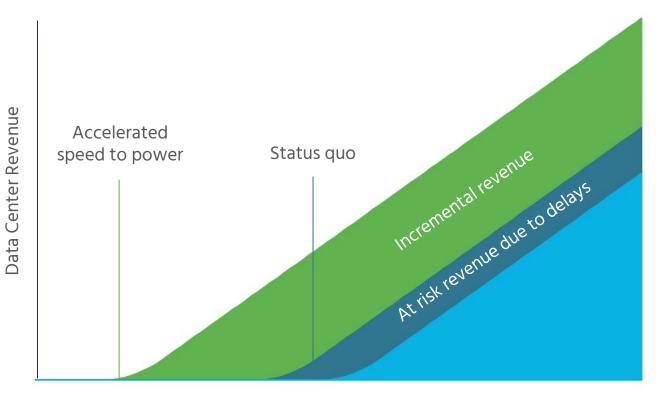
Leveling on terms: The Grid vs Microgrids

Mainspring

	The Grid	Microgrids	
Ownership	Hundreds of owners	Single owner	
Age	Very old	Shiny new	
Condition	Needs major upkeep	High-tech	
Relationship w/load	Independent	Integrated	
Operations	Complicated	Simple	
Generation model	Central station	On-site	
Interconnection times	Very long & expensive	Short & affordable	

International Energy Agency (IEA)

"Electricity 2024"


- Electricity consumption from data centers, AI, and the cryptocurrency sector could **double** by 2026.
- Full AI implementation in search tools like Google could lead to a **tenfold increase** in electricity demand.
- A typical Google search uses **0.3 Wh**; OpenAl's ChatGPT requires **2.9** Wh per request. With 9 billion daily searches, **this could add nearly 10 TWh annually**.
- By 2026, AI industry's electricity consumption is expected to grow tenfold compared to 2023.

<u>Source</u>

Survival of the Speediest

Data center revenue over time

- There is intense competition to power-up new data centers as quickly as possible, as large as practical
- Profits and market share are at stake
- Inability to energize new data centers quickly means irrelevance

Deployment timeline

Industry Feedback

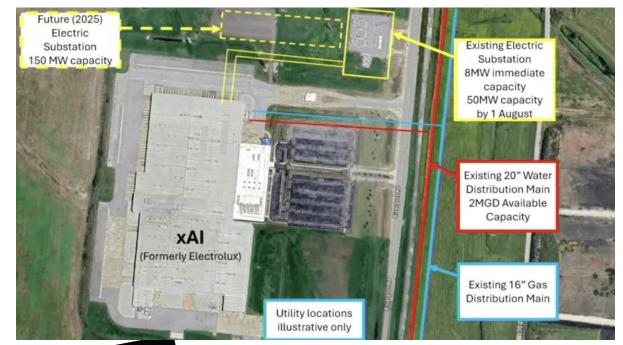
"I have customer contracts that I cannot fulfill due to **lack of power.**"

"I have data center inventory but no power. We're **at risk of losing customers** we've worked hard to get."

"Our sales team is constrained on what they can sell, and we are **concerned about them leaving**."

-Industry feedback

"Such rapid growth has ultimately raised concerns that the US electric utility industry will be **unable to respond quickly to the rise in power demand** because of a swelling backlog of projects in line to connect to the grid."


-Data Centre Magazine, April '24

A "Colossus" Example - xAI (the world's largest supercomputer)

- **Challenge**: Memphis facility lacked sufficient grid power to support 100,000* Nvidia H100 GPUs on short notice
- Innovative Solution: Brought in mobile, natural gaspowered turbines to provide supplemental energy
- **Quick Implementation**: Turbines were deployed rapidly, avoiding delays typical in securing permanent grid upgrades
- **Energy Requirement**: Secured approval for an additional 100 megawatts from TVA to meet long-term needs
- **Outcome**: Achieved operational readiness in just **122 days**, setting a record for such large-scale data center projects

* Each Nvidia H100 costs approximately \$25,000; total cost of GPUs for this DC is \$2.5 billion

Macro Benefits of Microgrids

Reduced rates & volatility

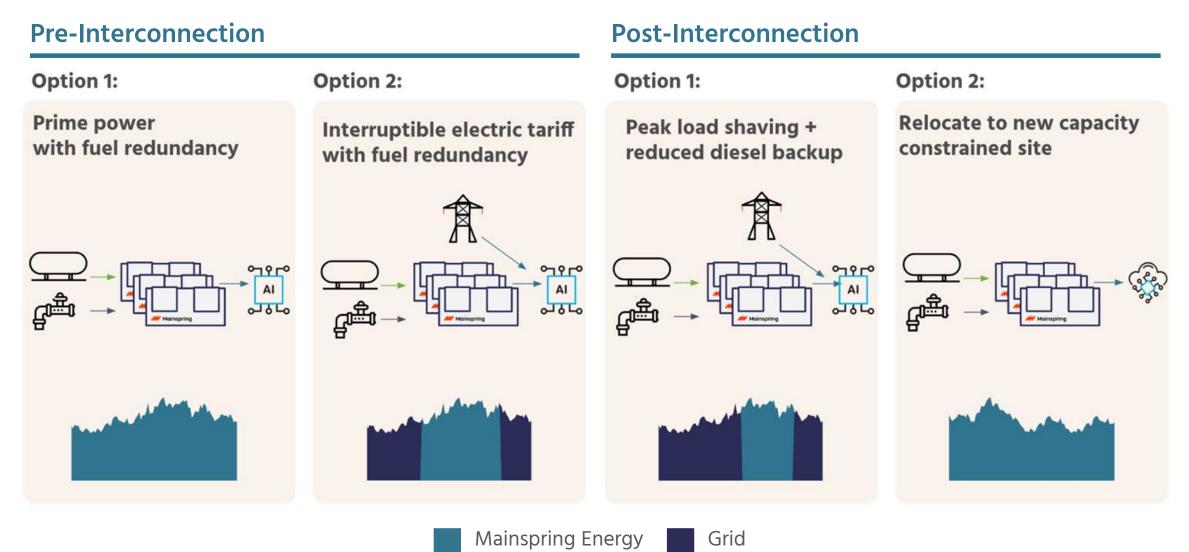
Local data center loads relieve upward pressure on capacity and T&D rates

Economic development

Rapid addition of DC power benefits local governments via a growing tax base, without impacting ratepayers

High-reliability capacity at load

Redundancy in DC systems ensures available capacity


When utility connections come, the high-reliability capacity resource benefits the local grid

Cleaner capacity

Sustainability mandates promote cleaner, easily permitted, fast-ramping, fuel-flexible capacity with the greatest long-term benefits to the local grid

Operational Flexibility over Time

Micro Benefits of Microgrids

High 9s availability

Modular & scalable architecture results in exceptional availability at a lower cost for any system size.

Rapid deployment

Factory-assembled and tested units enable fast, modular construction; low emissions expedite permitting and enable higher capacity below onerous federal regulations.

Modularity

Units can scale up as data center demand increases, and can be relocated once the grid connection is made.

Fuel flexibility

Instantaneous switching between any gaseous fuel without downtime offers multiple fuel redundancy options.

Dispatchability

Flexible and fast ramping power output from 0-100% enables variable workloads, resilient islanding operations, and fast response to changing capacity needs.

Future proof

Designed with the future in mind to support multiple operating scenarios after interconnection and offers a seamless transition to zero-carbon fuels such as hydrogen and ammonia.

Conclusion

Microgrids...

- Represent the democratization of power
- Offer timely solutions that data centers demand
- Provide the operational flexibility that data centers can afford
- Will become more prevalent as bottlenecks persist on the grid
- Will never fully replace the grid, but will continue to add resilience
- Will be embraced (and owned) by utilities that are willing to reimagine the grid

Mainspring

Dispatchable

Craig Gordon

craig.gordon@mainspringenergy.com

312-925-5151

GRID RESILIENCE AND INNOVATION PARTNERSHIPS (GRIP)

NASEO-NARUC MICROGRIDS STATE WORKING GROUP WEBINAR - POWERING DATA CENTERS THROUGH MICROGRIDS

PRESENTED BY:

Brandi Frazier Bestpitch

Associate Director, Energy Security and Reliability Virginia Department of Energy State Energy Office

December 3, 2024

Agenda

- Importance of Data Centers
- Challenges Virginia Faces
- Potential Solutions
- Grid Resilience and Innovation Partnerships (GRIP) Program
 - Battery Energy Storage Systems
 - Microgrids
- AWS Small Modular Reactor Agreement

https://vedp.org/industry/data-centers

IMPORTANCE OF DATA CENTERS

- Economic Growth and Job Creation
- Infrastructure Investment
- Tax Revenue
- Attracting Technology Companies
- Digital Transformation and Connectivity
- Global Competitiveness

CHALLENGES FOR VIRGINIA ----High energy Water usage for cooling consumption 223 Land and resource Economic sustainability and use Tax incentives

Data Centers | CHALLENGES

POTENTIAL SOLUTIONS FOR VIRGINIA

GRID RESILIENCE AND INNOVATION PROGRAMS (GRIP)

				Q
FUNDING OPPORTUNITY	CONCEPT PAPER SUBMISSION	FULL APPLICATION SUBMISSION	APPLICATION REVIEW AND AWARD NEGOTIATION	AWARD ANNOUNCEMENT
	PROJ IMPLEME		TING AND PLIANCE	

GRID RESILIENCE AND INNOVATION PROGRAMS (GRIP)

Data Center Flexibility as a Grid Enhancing Technology

Building flexible, grid-enhancing data centers in Virginia and South Carolina

Two projects selected

- Iron Mountain data center in Virginia
- Grace Complex in South Carolina

AMAZON WEB SERVICES (AWS) SMALL MODULAR REACTOR AGREEMENT

Expanding data center industry in Virginia with clean energy power solutions AWS and Dominion Energy partner to explore the development of Small Modular Reactor (SMRs) in Virginia

Key Benefits Virginia and Local Communities

- Energy Security and Reliability
- Economic Growth
- Environmental
- Innovation and National Security

THANK YOU.

CONTACT THE PRESENTER:

Brandi Frazier Bestpitch Associate Director, Energy Security and Reliability Virginia Department of Energy | State Energy Office 804-489-1449

Brandi.frazierbestpitch@energy.virginia.gov

December 3, 2024

NARUC National Association of Regulatory Utility Commissioners

Q & A

Source: RL Martin