

National Association of State Energy Officials

NASEO Virtual Roundtable on Electric Grid Sensor Technologies for Resilience and Affordability

April 2, 2024

Thank you to the U.S. Department of Energy Office of Electricity for their support of this event.

Welcome and Logistics

Kelsey Jones, Program Director, NASEO

Grid Sensor Introduction

• Challenges:

- Aging Infrastructure
 Rise of Distributed Energy Resources
- \circ Increased Demand
- Changing Consumer
 Preferences
- Increase of Severe Hazards

Agenda and Speakers

Agenda Item	Speaker
Sensors, Machine Learning, and IT Infrastructure	Patricia Hoffman, Principal Deputy Director, Grid Deployment Office, U.S. Department of Energy
Colorado's Advanced Grid Monitoring Grant Program	John Parks, Electricity Markets & Transmission Policy Analyst, Colorado Energy Office
Sentient Energy	Giri Iyer, Vice President, Business Development, Sentient Energy
Using Sensors to Accelerate the Energy Transition	Karthik Rao, Vice President, Client Success, LineVision
Discussion and Q&A	
Facilitated Breakout Discussions	
Report Out and Close	

Sensors, Machine Learning and IT infrastructure

Patricia Hoffman Principal Deputy Director Grid Deployment Office U.S. Department of Energy

Invest in Electric Infrastructure

Strategy:

Maintain and invest in critical generation facilities
 Improve and expand transmission and distribution systems
 Improve our Nation's resilience

~ \$26 Billion in investment capital

Reduce Financial, Market and Technology Risk

Priorities: Clean Energy Integration and Resilience
Asset Management/Predictive Maintenance
Planning and Modeling (Grid Management and Optimization)

Grid Resilience State/Tribal Formula Grants: \$2.3 billion
 Grid Resilience Innovative Partnerships: \$10.5 billion
 Puerto Rico Energy Resilience Fund: \$1 billion
 Civil Nuclear Credit Program: \$6 billion
 Hydro Incentives: \$753 million
 Transmission Facilitation Program: \$2.5 billion
 Transmission Facility Financing: \$2 billion
 Transmission Siting and Economic Development Grants: \$760 million

Grid Deployment Office | Department of Energy www.energy.gov/gdo/griddeployment-office

Colorado's Advanced Grid Monitoring Grant Program

April 2, 2024

John Parks - <u>gridresiliency@state.co.us</u> Electricity Markets & Transmission Policy Analyst

Rationale and Partnership Technology Approaches

As Colorado grows hotter and drier due to the impacts of climate change, the state's electric utilities and their customers are vulnerable to the risks of larger and more intense wildfires that threaten more communities, worsen air quality, and increase the frequency of electrical outages across the state.

Approaches to Addressing Wildfire Risk

Integrate Smart Grid Functions to <u>Prevent Wildfires</u>

Anticipate and Mitigate the Impacts of <u>Wildfire on the</u> <u>grid</u>

Increase the Ability to Redirect or Shut Off Power to <u>Minimize</u> <u>Blackouts</u>

- SCADA systems
- Adv. Grid Modeling Automation
- Remote HD Cameras
- Adv. Grid Monitoring
- Automation
 Software

- Automatic Reclosers
- Non-Expulsion fuses

Colorado Wildfire Mitigation Technology Partnership

Since 2021, wildfires caused over \$2 billion in manage in Colorado. The state is proposing a unique and innovative partnership that takes a statewide approach to address multiple aspects of wildfine management across an area that covers roughly 65% of the state, an area where 77% of Colorado residents live and work.

- 14 rural electric cooperatives
- 1 investor owned utility
- 1 municipal provider
- 4 state agencies (including Colorado Energy Office)

Total Colorado IIJA Grid Resiliency 40101d Allocations

Advanced Grid Monitoring Grants

Up to \$500,000 per grant (4 available at this level)

Match:

- One third local match (2022 utility sales < 4 million MWh)
- 100% cost match for Colorado's largest utilities (2022 sales > 4 million MWh)
- Cost match can be cash, in-kind, or a combination of the two

Timeline:

- Early Fall: Grant window open
- Late Fall: Grants due
- Winter: Award announcements

Advanced Grid Monitoring Grants - Uses

Eligible entities: all Colorado utilities

Eligible uses:

- 1. Fire monitoring & prevention technologies
- 2. Advanced Vegetation and fuel-load management, using LiDAR, satellites, AI, or other information technology
- 3. Distribution pole sensors
- 4. Smart meters (advanced metering infrastructure, or AMI)
- 5. Grid modeling
- 6. Studies to identify where best to strategically locate weather stations, HD cameras, and other grid monitoring technologies

Sentient Energy

Presentation to NASEO

HISTORICALLY UNDER-INSTRUMENTED GRID – ESTIMATED at ~70,000 feeders (1/3rd of US grid is here)

ILLUSTRATIVE MAP OF US ELECTRIC UTILITIES

KEY RELEVANT BACKGROUND

- Significant IIJA money going to non-investor owned entities; estimate \$9B out of \$14B
- 50% of the nation's geographical landmass and about 45M meters (~100M population)
- 2900 municipalities and electric cooperatives part of the electricity provider landscape
- Combination of rural, remote and pristine areas with many indigenous Indian nations
- Most, if not all entities are outside the purview of NASEO
- Many of these utilities have real energy justice challenges
- They have a real need for leapfrog innovation- FAST TIME TO VALUE

https://www.electriccooporganizing.org/rec101

Example of a comprehensive suite of analytics→ SaaS→ sensors portfolio

- Safety now as important as grid reliability
- Fastest way to instrument grid is to deploy grid sensor
- No need to take a planned outage for installation
- Sensors deploy in minutes/not years
- Software live within a hour
- Fast time-to-value
- Breakeven on investments is often <12 months
- Average 16K meter utility 100% deployed in 2 weeks

Sentient's solutions enable utilities to quickly locate outages and predictively prevent future outages

Sentient's Solutions:

Providing a road map for utilities to modernize their distribution grids with Sentient's Grid Analytics System and Grid Edge Control

The benefit of preventing outages before they occur is enormous, as are the consequences to the public of continuing with the status quo

Fast Time-to-Value at Scale

	 ✓ Enabling faster DER interconnect ✓ Confident microgrid
redictive Analytics •Veg contact alert •Equipment failure alert AIFI reduction rid edge voltage abilization (CVR) etter power quality	 Confident microgrid deployments ✓ Enabling better load forecasting ✓ Supporting FLISR ✓ Supporting Volt/VAR ✓ Supporting DERMS Long Term: Build net new Grid Flexibility
:	•Equipment failure alert AIFI reduction rid edge voltage abilization (CVR) etter power quality

Immediate: Drive new level of Grid Reliability improvements

How is Sentient Energy working with the states?

- Currently in various stages of collaboration with Iowa, Virginia, Tennessee, Colorado, Nevada, Minnesota, California, etc.
- Actively working with National Labs like Oakridge, Sandia, LLNL, etc.
- We are supporting Outage Data initiative Network (ODIN) with pre-failure alerts
- Actively seeking State Energy office and NASEO pulling us in
- We are open to collaborating with other technology providers- examples; substation-based cameras for remote monitoring and hydrogen sensors for transformer overloading for DER/EV
- We have a grant submission template ready for submission and use for IIJA formula grants and offer FREE grant writing services to the States and associated utilities
- We encourage a State-level submission, not one utility at a time

Back Up slides

Sentient Energy Confidential

Outage Mitigation (Equipment Use Case)

We have predicted U/G circuit failure as well

AGE • \$82,000 CMI impact

entient

Switch Cabinet Use Case

Sentient Energy Giyer@sentient-energy.com 770-402-1085

Using Sensors to Accelerate the Energy Transition

Barriers to a Net Zero Future

Grid Expansion

100% growth in capacity needed by 2035. **+2 TW** of projects stuck in the interconnection queue.

Intensifying Climate Risk

\$90B+ in economic losses from Texas' 2021 storm

Aging Infrastructure

50% of lines are at or near the end of useful life.

Serving Load Growth

Electrification of everything requires more capacity to serve your customers.

Lack of Visibility

99.9% of all transmission lines have no monitoring beyond the substation

LineVision LUX Sensor

Complete Visibility

> Optical sensor monitors all phases

> Data transmitted wirelessly to LineVision platform

> Self-powered using solar PV

> Sensors strategically placed every 2-3 miles

> Install completed using basic hand tools

> No outages and no
live-line work

Educed Operational Risk

LineHealth

LineVision is a new model for expanding grid capacity with sensors and analytics

Dynamic Line Ratings

 Increase transmission capacity by providing Operators with real-time understanding of conductor conditions

Model the impact of wind cooling using
 Computational Fluid Dynamics and sensor validation

Dominion Energy	national grid	NEW YORK STATLOF OPPORTUNITY. NY Power Authority			⊘ Xcel Energy⁼
SMUD°	► bge AN EXELON COMPANY	C comed [™] AN EXELON COMPANY	AN EXELON COMPANY	TVA	Energia
AMERICAN ELECTRIC POWER	SKP ®		1PG		
TRANSPOWER	50hertz	Northern Ireland Electricity Networks	MAVIR	independent power TRANSMISSION OPERATOR	M HOPS

LineVision is a Trusted Partner

> NYSERDA funded CLCPA project to deploy DLR in upstate NY. Unlocking transmission capacity and integrating renewables.

Integrating Renewables

New York Transco Building a Clean Energy Future Together

Installation on critical sections of NYES 54-mile line. Ensuring the new transmission lines are operating at maximum efficiency and capacity.

Reliability & Resilience

nationalgrid

> DLR deployed to reduce
 OSW curtailments in UK.
 Reduced congestion costs by £14M/yr.

Reducing Congestion

> Expected **20-55% capacity increases** from DLR, providing grid flexibility for critical C&I load integration.

Enabling Electrification

Regulatory Momentum for GETs

Department of Energy

GRIP Program -40101(c), 40107, 40103b - DLR, monitoring & control technologies

Formula Resilience Grants - 40101d

 Funding to States to improve grid resilience (monitoring & control technologies)

Transmission Facilitation Program - Sec 40106 - Priority funding to projects with GETs

Transmission Needs Study

- GETs highlighted in Final Report

DOE GETs FOA \$8.4 million

 Increasing Utilization and Reliability of Electric Infrastructure with GETs

Federal Energy Regulatory Commission

Transmission Line Ratings NOI on DLR [AD22-5-000] - Inquiry for a possible mandate on DLR

Transmission Planning & Cost Allocation NOPR [RM21-17] Require transmission providers to consider GET's (DLR &

APFC) in regional transmission planning

Transmission Incentives Policy [RM20-10-000; AD19-19-000] - Addresses the requirement of FPA 219(b)(3) to "encourage deployment of transmission technologies... to increase the capacity and efficiency of existing transmission facilities"

Transmission Planning & Cost Management [AD22-8; AD21-15]

- Ensure sufficient transparency into & cost effectiveness of local and regional transmission planning decisions

State Engagement

Legislative Efforts

- Increase in <u>legislation</u> to encourage or incentivize GETs
- 9 states considering legislation

Massachusetts: Study & Report

- Convened <u>Clean Energy</u> <u>Transmission Working</u> <u>Group</u>
- Robust engagement on Grid Enhancing Technologies, including DLR
- Final Report to Legislature December 2023

New York: Demonstration Funding

- <u>NYSERDA Avangrid</u> <u>Challenge</u>
- Part of NYSERDA's Future Grid Challenge Program
- Secured funding for DLR deployment on 2 lines

Thank you.

LineVisionInc.com

in LinkedIn.com/company/LineVision

€ J @LineVisionCo

info@LineVisionInc.com

Discussion and Q&A

Breakout Questions

- How is your state incorporating sensors into short- and long-term grid planning?
- Are you engaging investor-and-consumer owned utilities on this topic? Or other third parties?
- Is your state running any programs to support RD&D of grid sensor technologies?
- What are the strongest use cases for grid sensors in your state?
- What challenges have you encountered?
- What additional questions do you have about grid sensors and the benefits/challenges?
- What technical assistance/ resources do you need from DOE or NASEO?

Thank you!