U.S. DEPARTMENT OF ENERGY

Eric Hsieh Office of Electricity

Energy Storage Update

NASEO JUNE 25, 2020

DOE Energy Storage Grand Challenge

Vision

By 2030, the U.S. will be the world leader in energy storage utilization and exports, with a secure domestic manufacturing supply chain independent of foreign sources of critical materials

Mission

The ESGC will focus resources from across the DOE to create a comprehensive program to accelerate the development and commercialization of next-generation energy storage technologies and sustain U.S. global leadership in energy storage, through the following objectives:

ESGC in Summary

U.S. Department of Energy ESGC Overview

3

ESGC Focus Areas

How to achieve "Innovate Here, Make Here, Deploy

Technology Development	Technology Transition	Policy and Valuation	Domestic Manufacturing and Supply Chain	Workforce Development
 Establish ambitious, achievable performance goals, and a comprehensive R&D portfolio to achieve them. 	•Accelerate the technology pipeline from research to system design to private sector adoption through rigorous system evaluation, performance validation, siting tools, and targeted collaborations.	•Develop best-in- class models, data, and analysis to inform the most effective value proposition and use cases for storage technologies.	 Design new technologies to strengthen U.S. manufacturing, recyclability, and reduce dependence on foreign sources of critical minerals. 	•Train the next generation of American workers to meet the needs of the 21st century grid and energy storage value chain.

Use Case-Informed R&D Framework

- What are your energy or infrastructure goals?
- Home, business, community, regional
- Potentially accelerated with next-generation storage

Vision

Use Case Framework

- Who are the beneficiaries?
- What are the performance requirements?
- What are other technical or deployment constraints?

- What technologies could meet the use case need?
- Can substantial progress (cost, performance) be made by 2030?

Technology Portfolio

Accelerate Pathways

- What is the R&D pathway to achieving commercial viability?
- What DOE resources (consortia, partnerships, test facilities, programs) would be utilized to accelerate each technology?

U.S. DEPARTMENT OF

U.S. Department of Energy ESGC Overview

Resilience-Centric Use Case Examples

Use Case \lt	Serving Remote Communities	Use Case	Critical Services Resilience		
Scope	 Island, coastal, and remote communities 		 Critical sectors, including: Defense 		
Major Drivers	 Electricity premium due to fuel logistics and maintenance Fuel supply disruptions 	Scope <	 Emergency Services Healthcare Organizations that need to maintain operations 		
Success Statement	Clean, resilient, and cost-effective	Major Drivers <	 Disaster-related and other power outages 		
	storage and flexibility solutions to provide electricity for critical and beneficial public services.	Success Statement	 Cost-effective storage solutions that maintain critical services for a sufficient duration following extended power outages. 		
Examples {	 "Oregon's Office of Emergency Management encourages people to be prepared to be on their own for a minimum of two weeks." 	Examples	 "At a minimum MDLARA will require that sufficient on-site fuel storage be available to provide demand for at least 24 hours." Michigan Department of Licensing & Regulatory Affairs 		
For more details:					

U.S. Department of Energy ESGC Overview

6

Recent OE Storage Activities

U.S. Department of mergy

ESGC Overvie

DOE National Labs University Research

Field Validation

Technical Assistance

Previous DOE Work on Access

"We are pleased to present a special issue that addresses the challenge of electricity access, at a time that the topic of accessibility not just to electricity but to housing, to healthcare and even perhaps to a basic guaranteed income have been part of the national discussion."

 Richard Cohen and Gerry Khermouch

- From utility disconnection to universal access *Kirsten Verclas, Eric Hsieh*
- Navajo residential solar energy access as a global model Sandra K. Begay
- How Citizen Potawatomi Nation utilizes energy efficiency and renewable energy to address its high energy burden Sandra K. Begay
- Affordability and access in focus: Metrics and tools of relative energy vulnerability *Jessica Lin*

- The Pay As You Save program in rural Arkansas: An opportunity for rural distribution cooperative profits Jessica Lin
- Chaninik Wind Group: Lessons learned beyond wind integration for remote Alaska *Fletcher Souba, Pam Bloch Mendelson*
- Electric vehicle and solar energy pilot: Opportunity to address suburban energy challenges *Kirsten Verclas*

